

Recombinant Fibroblast Growth Factor-21 with His-tag (Human)

Туре:	Recombinant	Cat. No.:	41184
Tag:	His	Size:	0.1 mg
Source:	E.Coli	Purity:	>95%
Other names:	FGF21	Species:	Human

Introduction to the Molecule

FGF21, a polypeptide with 210 amino acid residues produced mostly from the liver tissue.[1] Mouse FGF21 shares 75% identity as human FGF21. Recent animal studies indicate it possesses potent beneficial effects on glucose and lipid metabolism and insulin sensitivity.[2] Increasing data shows FGF21 can significantly stimulate glucose uptake in mature adipocytes. And The lowered LDL-cholesterol and increased HDL-cholesterol can also be observed.[2,3] FGF21 exerts its bioactivity through interaction with membrane bound FGF receptors (FGFRs) which requires β -Klotho as a co-factor to bind and activate FGFR signaling.[4,5]The activation of FGF21 can induce the stimulation of diverse downstream pathways medicated by MAPK,FRS-2, SHP-2, PI3K, raf, stat and other signaling molecules.[6-9] In sum, FGF21 induces a variety of significant beneficial metabolic changes without apparent adverse effects which makes this factor a hot candidate to treat some metabolic diseases.[10]

Description

Total 206AA Mw: 22.5kDa (calculated). N-terminal His-tag and TEV cleavage site, 25extra AA (highlighted).

Amino Acid Sequence

МЗҮҮННННН	DYDIPTTENL	YFQGA HP	IPDSSPLLQF	GGQVRQRYLY
TDDAQQTEAH	LEIREDGTVG	GAADQSPESL	LQLKALKPGV	IQILGVKTSR
FLCQRPDGAL	YGSLHFDPEA	CSFRELLLED	GYNVYQSEAH	GLPLHLPGNK
SPHRDPAPRG	PARFLPLPGL	PPALPEPPGI	LAPQPPDVGS	SDPLSMVGPS
QGRSPSYAS				

Formulation

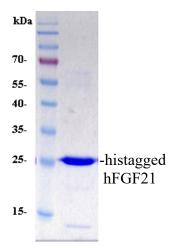
Lyophilized in 1 mg/mL in PBS.

Reconstitution

Add deionized water to prepare a working stock solution of approximately 1 mg/mL and let the lyophilized pellet dissolve completely.

Storage

Store lyophilized protein at -20°C. Aliquot reconstituted protein and store at -80°C. Avoid repeated freezing /thawing cycles.


Applications

ELISA and Western blotting.

Quality Control Test

BCA to determine quantity of the protein. SDS PAGE to determine purity of the protein.

SDS-PAGE Gel

Contact Us

- Website: www.torontobioscience.com
- E-mail: sales@torontobioscience.com

Reference:

[1] Nishimura T, Nakatake Y, Konishi M, Itoh N: Identification of a novel FGF, FGF-21, preferentially expressed in the liver. *Biochim Biophys Acta*1492:203–206, 2000

[2] Kharitonenkov A et al. FGF-21 as a novel metabolic regulator. J Clin Invest 115:1627-1635, 2005

[3]Alexei Kharitonenkov et al. The Metabolic State of Diabetic Monkeys Is Regulated by Fibroblast Growth Factor-21.*Endocrinology* .148(2):774–781. 2007

[4] Hiroshi Kurosu et al. Tissue-specific Expression of βKlotho and Fibroblast Growth Factor (FGF) Receptor Isoforms Determines Metabolic Activity of FGF19 and FGF21. *J Biol Chem.* 282(37): 26687–26695. 2007

[5] Ogawas Y et al. BetaKlotho is required for metabolic activity of fibroblast growth factor 21 *Proc Natl Acad Sci USA* 104: 7432-7437, 2007.

[6]Steven L. PELECH et al. Fibroblast growth factor treatment of Swiss 3T3 cells activates a

subunit S6 kinase that phosphorylates a synthetic peptide substrate. *Proc. Natl. Acad. Sci. USA* Vol. 83, pp. 5968-5972, August 1986

[7]Rosa Carballada et al. Phosphatidylinositol-3 kinase acts in parallel to the ERK MAP kinase in the FGF pathway

during Xenopus mesoderm induction. Development 128, 35-44 (2001)

[8]Dayanand D. Deo et al. Phosphorylation of STAT-3 in Response to Basic Fibroblast Growth

Factor Occurs through a Mechanism Involving Platelet-activating Factor, JAK-2, and Src in Human Umbilical Vein Endothelial Cells. *The journal of molecular chemistry*. Vol. 277, No. 24, Issue of June 14, pp. 21237–21245, 2002 [9]Maria I. Kontaridis et al. Role of SHP-2 in Fibroblast Growth Factor Receptor-Mediated

Suppression of Myogenesis in C2C12 Myoblasts. *Molecular and cellular biology*, Vol. 22, No. 11, p. 3875–3891. 2002 [10] Dostálová I, Haluzíková D, Haluzík M.Fibroblast Growth Factor 21: A Novel Metabolic Regulator With Potential Therapeutic Properties in Obesity/Type 2 Diabetes Mellitus. *Physiol. Res.* 58: 1-7, 2009